

How did Gloria know to find 2 on the x-axis instead of the y-axis?
Did Gloria and Tim get the same answer? How do you know?

Discuss Connections

Use Gloria's "graphing" and Tim's "function notation" ways to find where $f(x)=13$.

Think, Pair. First, think about the question(s) above independently. Then, get with a partner and and discuss your answers. After talking with your partner, what is your answer?

Think	
\qquadMany teachers find it helpful to distribute paper copies of this page and to have students (and their partners) write responses in the boxes.	

Big Idea. When your teacher tells you to do so, write what you think is the big idea of this example, in your own words.

Gloria and Tim were solving the problem

$$
f(x)=4 x+1
$$

The "Big Idea" page, which is the third page provided with each example, summarizes the lesson objective for this example.

I am solving
for the ouput
and 1 know 2

We can use function notation as well as x 's and y 's to write and graph linear functions. Both $f(x)$ and y refer to the output of the function, when x is the input.

How did Gloria know to mnd
Did Gloria and Tim get the sam\& nswer? How do you R w?

Tim and Emma were asked to find the slope of the line passing through $(3,4)$ and $(2,-1)$.

Gloria and Tim were asked to solve the linear system

$$
\left\{\begin{array}{c}
4 x+6 y=4 \\
x-2 y=-6
\end{array}\right.
$$

Topic 3 is Systems of Linear Equations.
In Which is better? examples, students compare two different methods for solving a problem, where one of the methods may be better than the other.

I substituted this into the first equation.

Then I solved for y.

I plugged this back into the equation I solved for x.
Then I found
x.

Here is my answer.

$x-2 y=-6$
$x=2 y-6$

$4(2 y-6)+6 y=4$
For each example, we provide our recommendation about \& whether it is best used at the beginning, middle, or end of a lesson. This example is labeled "Mid-lesson," as it may be useful in deepening the content of a lesson or even serving as the centerpiece of a lesson. "Beginning" examples are good for introducing new content, while "End" lessons might be good for review or closure. $x=2(2)-6$

$$
x=4-6
$$

$$
x=-2
$$

The solution is $(-2,2)$

\square ——
Tim's "solve for $y^{\prime \prime}$ way

I solved the second equation for y.

I substituted this into the first equation. Then I solved for x.

I plugged this back into the equation I solved for y. Then I found y.

Here is my answer.

> A discussion using these examples begins by understanding each of the compared examples - by preparing to compare, as indicated by questions with this symbol.

Why did Gloria choose to solve the second equation for the x variable? Why did Tim choose to solve the second equation for the youriable?

This symbol indicates questions that are best used in a subsequent
Which method do you think phase of the discussion, where students are comparing and contrasting the two methods provided in the example.

Riley and Gloria were asked to solve $8 x^{2}-24 x=0$.
Topic 4 is Polynomials and Factoring.
In Which is correct? examples, students compare two different methods for solving a problem, where one of the methods is correct and the other is not.
First, I
factored out
the $8 x$.
Then, I
set $8 x$ and
$(x-3)$ equal
to 0 and
solved.
Here are my
answers.

$$
\begin{gathered}
8 x^{2}-24 \mathrm{x}=0 \\
8 x(x-3)=0 \\
\downarrow \\
8 x=0 \text { or }(x-3)=0 \\
\downarrow \\
x=0 \text { or } x=3
\end{gathered}
$$

Gloria's "divide by x " way

